Synthese, Kristallstruktur und Konformation von N²-Dibenzyl-N¹-*t*-butoxycarbonylhydrazin

Zdzisław Gałdecki¹, Bernard Luciak^{2, *}, Adam S. Redliński³, Krzysztof Kaczmarek³, und Mirosław T. Leplawy³

¹ Institut für Allgemeine Chemie, Technische Universität Łódź, PL-90-924 Łódź, Polen

² Institut für Physik, Technische Universität Łódź, PL-90-924 Łódź, Polen

³ Institut für Organische Chemie, Technische Universität Łódź, PL-90-924 Łódź, Polen

Synthesis, Crystal Structure and Conformation of N²-Dibenzyl-N¹-t-butoxycarbonyl Hydrazine

Summary. The synthesis and the crystal structure of N²-dibenzyl-N¹-butoxycarbonyl hydrazine are reported. The compound was prepared from commercially available *t*-butyl carbazate. It crystallizes in the triclinic space group P1 with a = 5.479(1) Å, b = 9.559(1) Å, c = 9.748(1) Å, $\alpha = 63.81(1)^\circ$, $\beta = 87.52(1)^\circ$, $\gamma = 74.07(1)$ Å, Z = 1, D = 1.18 g/cm³. The structure was solved by direct methods and refined to R = 0.0329.

Keywords. N²-dibenzyl-N¹-t-butoxycarbonyl hydrazine; Crystal structure; Conformation.

Einleitung

Die von uns durchgeführten Untersuchungen der Synthese von $Tfa-(Deg)_n$ -OR (N-Trifluor-acetyl-oligo-C^{α,α}-diethylglycinester) (n = 1-5) haben gezeigt, daß sich *t*-Butylester zur Blockierung der Carboxylgruppe eignet [1]. Bei der Synthese höherer Oligopeptide (n > 5) durch die Kondensation der Fragmente nach der (1 + n)-Strategie haben wir festgestellt, daß gegenüber niedrigeren Oligopeptiden intensivere Reaktionsbedingungen, d. h. höhere Temperatur und längere Reaktionszeiten verwendet werden müssen. Es zeigte sich, daß die *t*-Butylgruppe dabei teilweise zerstört und abgespaltet wird.

Da aus den Untersuchungen von Hardy [2] folgt, daß die N,N-Dibenzylhydrazidgruppe wesentlich beständiger als die *t*-Butyl-estergruppe ist, haben wir sie zur Blockierung der C-terminalen Carboxylgruppe benutzt.

N,N-Dibenzylhydrazin ist schwer zugänglich, und deshalb haben wir es aus *t*-Butyl-carbazat über N^2 -Dibenzyl- N^1 -*t*-butoxy-carbonylhydrazin synthetisiert.

In diesem Bericht wird neben der von uns ausgearbeiteten neuen Methode der Synthese dieses Zwischenstoffs auch seine Struktur besprochen.

Experimenteller Teil

Synthese von N^2 -Dibenzyl- N^1 -t-butoxycarbonylhydrazin

In 50 ml abs. Ethanol wurden 5.826 g (40 mmol) *Boc*-NH – NH₂ gelöst und mit 4.0 g körnigem NaOH versetzt. Diese Mischung wurde während 30 min bei Raumtemperatur gerührt. Inzwischen löste sich

Tabelle 1. Wichtigste Kristalldaten und Meßbedingungen

$\alpha = 63.81(1)^{\circ}$
$\beta = 87.52(1)^{\circ}$
$\gamma = 74.07(1)^{\circ}$
$\mu = 5.772 \text{ cm}^{-1}$
$\lambda_{CuK\alpha} = 1.54178 \text{ Å}$
Z = 1
$\omega/2\Theta$ Abtastung
R = 0.0329
$R_w = 0.0308$
$w_i = 1./\sigma^2 (F_i)$
$\Delta \rho / \rho = 0.09$
1777 Reflexe mit $F > 2 \sigma(F)$
F(000) = 168
$1^{\circ} \leqslant \Theta \leqslant 70^{\circ}$

das NaOH teilweise, und die anfangs farblose Flüssigkeit wurde gelb, wobei ein exothermer Effekt beobachtet wurde. Danach wurden 115.8 g (11.0 ml, 80 mmol) Benzylbromid zugetropft, währenddessen sich NaOH vollständig löste und Kristalle von NaBr ausfielen. Die Lösung wurde über Nacht gerührt, dann mit 6M H₂SO₄ neutralisiert, mit 20 ml Wasser versetzt und unter Vakuum eingeengt. Der Restbestand wurde mit Ethylether extrahiert (3 × 25 ml). Die Etherextrakte wurden zusammengegossen und zuerst mit Wasser, dann mit gesättigter Kochsalzlösung gewaschen. Schließlich wurde die Lösung mit wasserfreiem Na₂SO₄ getrocknet und der Ether abgezogen. Nach Zusatz von 50 ml Hexan wurde die Lösung über Nacht stehengelassen. Am nächsten Tag wurden Kristalle von N²-Dibenzyl-N¹-*t*-butoxycarbonyl-hydrazin abfiltriert. Es wurde 2.814 g reines Produkt erhalten. Ausbeute: 23%. Schmelzpunkt: Fp. = 116 – 117 °C, Elementaranalyse (C₁₉H₂₄N₂O₂): ber. C 75.88, H 6.06, N 8.43; gef. C 76.04, H 6.18, N 8.58. ¹H-NMR (80 MHz, CDCl₃), δ (ppm): 1.35 (9 H, s, *Bu*¹), 3.93 – 4.05 (4 H, m, NCH₂), 5.68 (1 H, s, NH), 7.20 – 7.42 (10 H, m, CH_{arom}). IR (in KBr) v (cm⁻¹): 1 210, 1 250, 1 365, 1 990, 1 455, 1 605, 1 645, 3 075, 3 290.

Kristallstrukturbestimmung

Einkristalle zur röntgenographischen Untersuchung wurden aus Ethanol gezüchtet. Die Zellmetrik und Reflexintensitäten wurden mittels eines CAD-4-Diffraktometers erhalten. Kristalldaten und Meßbedingungen sind in Tabelle 1 zusammengestellt. Die Lagen der meisten Nicht-Wasserstoffatome wurden mit Hilfe direkter Methoden [3] gefunden. Die Koordinaten der übrigen und auch aller Wasserstoffatome wurden aus Differenz-Fourier-Synthese bestimmt. Die Parameter der Nicht-Wasserstoffatome wurden mittels "kleinster Quadrate" zuerst isotrop, dann anisotrop und die der Wasserstoffatome dagegen nur isotrop verfeinert [4]. Die absolute Konfiguration wurde nicht bestimmt.

Ergebnisse und Diskussion

Die Atomkoordinaten und die äquivalenten isotropen thermischen Parameter [5] der Nicht-Wasserstoffatome sind in Tabelle 2 und die der Wasserstoffatome in Tabelle 3 angegeben¹. Die Bezeichnung der Nichtwasserstoffatome geht aus Abb.

38

¹ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen 2, Deutschland, unter Angabe der Hinterlegungsnummer CSD 54852, der Namen der Autoren und des Zeitschriftenzitats angefordert werden

Atom	x	У	Ζ	B _{äq}
N 1	0.5806 (7)	0.3237 (4)	0.4987 (3)	3.65 (08)
N 2	0.5638 (0)	0.4210 (0)	0.3374 (0)	3.20 (08)
C 10	0.3130 (7)	0.5450 (4)	0.2918 (4)	3.37 (09)
C11	0.2972 (7)	0.6755 (4)	0.3414 (4)	3.08 (09)
C12	0.4603 (8)	0.7730 (5)	0.2890 (4)	3.78 (10)
C13	0.4321 (8)	0.9030 (5)	0.3217 (4)	4.43 (12)
C 14	0.2418 (9)	0.9359 (5)	0.4094 (5)	4.72 (13)
C15	0.0809 (9)	0.8394 (5)	0.4634 (5)	5.04 (14)
C16	0.1072 (8)	0.7105 (5)	0.4301 (4)	4.13 (11)
C 20	0.5918 (9)	0.3168 (4)	0.2587 (4)	3.88 (11)
C 21	0.6016 (7)	0.4111 (4)	0.0889 (4)	3.32 (09)
C 22	0.4482 (7)	0.4018 (5)	-0.0142(4)	4.01 (11)
C 23	0.4589 (9)	0.4871 (5)	-0.1710(5)	4.81 (13)
C 24	0.6199 (9)	0.5836 (5)	-0.2267(4)	4.73 (12)
C 25	0.7726 (8)	0.5939 (5)	-0.1258(4)	4.56 (12)
C 26	0.7651 (8)	0.5076 (4)	0.0320 (4)	4.13 (11)
01	1.0128 (6)	0.2767 (4)	0.5320 (3)	4.46 (08)
C2	0.8122 (7)	0.2533 (4)	0.5800 (4)	3.28 (09)
02	0.7792 (6)	0.1517 (3)	0.7237 (3)	3.73 (07)
C4	0.9922 (7)	0.0610 (4)	0.8457 (4)	3.22 (08)
C41	1.1929 (9)	-0.0579 (5)	0.8078 (5)	4.74 (13)
C42	0.8570 (9)	-0.0272(6)	0.9834 (4)	5.04 (14)
C 43	1.1029 (9)	0.1768 (5)	0.8725 (5)	4.50 (13)

Tabelle 2. Atomkoordinaten und äquivalente isotrope Temperaturparameter (in Å) der Nicht-Wasserstoffatome. $B_{aq} = (8 \pi^2/3) \sum_i \sum_j U_{ij} g_{ij}^{-1} g_{ji}$

1 hervor. Einige Bindungslängen, Bindungs- und Torsionswinkel sind in den Tabellen 4-6 zusammengestellt. Die Packung im Kristall wird durch eine intermolekulare Wasserstoffbrücke $[N1 \cdots O1, x-1, y, z, 3.246(5)]$ Å bestimmt Konformationen der Benzylgruppen sind antiperiplanar (Abb. 2). Die $[N1-N2-C20-C21: -174.3(3)^{\circ}]$ und synklinal [N1-N2-C10-C11:72.6(3)°]. Ihre Methylenkohlenstoffe sind gegenüber der t-Butylestergruppe synklinal $[C2-N1-N2-C20: 88.2(4)^{\circ}]$ und antiperiplanar [C2-N1-N2-C10: $-150.9(3)^{\circ}$]. In den N'N'-Dibenzylderivaten von Homooligopeptiden aus C^{α,α}-Di*n*-propylglycin haben diese Winkel die Werte im antiklinalen Bereich [6]. Das N 2-Atom ist pyramidal hybridisiert. Die Atome N 1, N 2, C 2, H sind statistisch sicher nichtplanar. Das H-Atom weicht von der auf diesen Atomen aufgespannten Kleinstenquadratenebene um 0.30(4) Å ab. Das deutet auf eine beträchtliche Pyramidalisierung dieses Stickstoffs hin. Die Atome N 1, C 2, O 1, O 2 bilden dagegen eine planare Gruppe mit einer Genauigkeit von 0.0021 Å. Der kurze N1-C2-Abstand [1.356(5) Å] weist auf eine weitgehende Kopplung der Lone-pair-Elektronen des N 1-Atoms mit dem π -Elektronensystem in dieser Gruppe. Angaben über der Struktur der Moleküle mit dem Monocarboxyhydrazin-Gerüst im acyklischen System sind in der Literatur sehr selten vertreten. Bis 1990 wurde, nach Cambridge Structural Database [7], die Strukturbestimmung nur für zwei derartige Verbindungen

Atom	x	У	Ζ	В
H	0.460 (6)	0.280 (4)	0.536 (3)	3.4 (7)
H 101	0.283 (6)	0.599 (4)	0.168 (4)	4.6 (7)
H 102	0.170 (6)	0.491 (4)	0.324 (3)	4.1 (7)
H121	0.588 (6)	0.749 (3)	0.226 (3)	4.1 (7)
H131	0.540 (8)	0.975 (5)	0.275 (4)	7 (1)
H 141	0.222 (7)	1.021 (4)	0.430 (4)	4.7 (8)
H151	-0.043(7)	0.854 (4)	0.520 (9)	4.4 (8)
H 161	0.000 (6)	0.650 (4)	0.468 (3)	4.1 (7)
H 201	0.751 (6)	0.222 (4)	0.309 (4)	4.6 (8)
H 202	0.466 (6)	0.263 (4)	0.280 (4)	3.8 (7)
H 221	0.341 (7)	0.335 (4)	0.024 (4)	5.5 (9)
H 231	0.345 (8)	0.488 (5)	-0.242(4)	7 (1)
H 241	0.616 (7)	0.651 (4)	-0.345 (4)	5.8 (9)
H 251	0.899 (8)	0.667 (5)	-0.170 (4)	7 (1)
H 261	0.871 (7)	0.518 (4)	0.103 (4)	5.8 (9)
H 411	1.298 (8)	-0.141 (5)	0.899 (4)	6 (1)
H 412	1.116 (8)	-0.119 (5)	0.770 (5)	7 (1)
H 413	1.282 (8)	0.012 (5)	0.710 (5)	7 (1)
H 421	0.977 (8)	-0.094 (5)	1.081 (5)	6.4 (9)
H 422	0.724 (8)	0.057 (4)	1.016 (4)	6 (1)
H 423	0.795 (8)	-0.095 (5)	0.972 (4)	6 (1)
H 431	1.228 (1)	0.099 (6)	0.987 (6)	11 (1)
H 432	1.193 (8)	0.239 (5)	0.784 (4)	6 (1)
H 433	0.984 (9)	0.251 (5)	0.890 (5)	7 (1)

Tabelle 3. Atomkoordinaten und isotrope Temperaturparameter (in Å) der Wasserstoffatome

Abb. 1. Struktur und verwendete Bezifferung von N^2 -Dibenzyl- N^1 -*t*-butoxycarbonylhydrazin

Abb. 2. Stereoskopische Ansicht der Kristallpackung

N1-N2	1.4214 (25)	C21-C22	1.3847 (65)
N1-C2	1.3560 (49)	C21-C26	1.3856 (60)
N2 - C10	1.4780 (32)	C22-C23	1.3867 (54)
N2 - C20	1.4780 (46)	C 23 – C 24	1.3737 (73)
C10-C11	1.5056 (65)	C 24 – C 25	1.3708 (72)
C11-C12	1.3876 (63)	C 25 - C 26	1.3933 (48)
C11-C16	1.3891 (57)	O1-C2	1.2145 (51)
C12-C13	1.3819 (75)	C2-O2	1.3460 (40)
C13-C14	1.3773 (65)	O2-C4	1.4773 (44)
C14-C15	1.3721 (73)	C4-C41	1.5123 (62)
C15-C16	1.3769 (77)	C4-C42	1.5229 (55)
C 20 – C 21	1.5023 (48)	C4-C43	1.5162 (75)

Tabelle 4. Einige Bindungsabstände in (Å)

Tabelle 5. Einige Bindungswinkel in (°)

N2-N1-C2	119.36 (27)	C22-C21-C26	118.59 (33)
N1 - N2 - C20	109.43 (22)	C21-C22-C23	120.56 (40)
N1 - N2 - C10	107.66 (22)	C22 - C23 - C24	120.56 (41)
C 10 - N 2 - C 20	111.15 (22)	C23-C24-C25	119.43 (37)
N2-C10-C11	112.88 (29)	C 24 - C 25 - C 26	120.50 (41)
C10-C11-C16	121.21 (37)	C 21 – C 26 – C 25	120.35 (39)
C10-C11-C12	120.50 (35)	N1-C2-O1	126.41 (34)
C12-C11-C16	118.09 (40)	O1-C2-O2	126.24 (37)
C11-C12-C13	121.06 (39)	N1-C2-O2	107.35 (33)
C12-C13-C14	119.89 (44)	C2-O2-C4	121.69 (32)
C13-C14-C15	119.67 (46)	O2-C4-C43	110.77 (32)
C14-C15-C16	120.61 (45)	O2-C4-C42	101.34 (32)
C11-C16-C15	120.67 (41)	O2-C4-C41	110.61 (31)
N2-C20-C21	111.48 (30)	C42-C4-C43	110.59 (34)
C 20 - C 21 - C 26	121.02 (35)	C41 - C4 - C43	111.80 (37)
C 20 - C 21 - C 22	120.38 (36)	C41 - C4 - C42	111.28 (36)

Tabelle 6. Einige Torsionswinkel in (°)

N2-N1-C2-O2	- 171.79 (28)	C14-C15-C16-C11	0.08 (71)
N2-N1-C2-O1	7.81 (61)	N2 - C20 - C21 - C22	-130.67 (37)
C 2 - N 1 - N 2 - C 20	88.22 (37)	N2 - C20 - C21 - C26	49.97 (49)
C2-N1-N2-C10	-150.87 (33)	C20-C21-C26-C25	179.78 (39)
N1-N2-C20-C21	-174.32 (29)	C20-C21-C22-C23	-179.22(40)
N1-N2-C10-C11	72.62 (33)	C22-C21-C26-C25	0.41 (61)
C 10 - N 2 - C 20 - C 21	66.90 (36)	C26-C21-C22-C23	0.15 (62)
C 20 - N 2 - C 10 - C 11	-167.55 (29)	C21-C22-C23-C24	-0.69 (69)
N2-C10-C11-C12	60.63 (47)	C22 - C23 - C24 - C25	0.64 (71)
N2-C10-C11-C16	-124.64 (38)	C23-C24-C25-C26	-0.06 (68)
C10-C11-C16-C15	-174.23 (40)	C 24 - C 25 - C 26 - C 21	-0.47 (65)
C10-C11-C12-C13	173.77 (39)	O1-C2-O2-C4	3.70 (61)
C12-C11-C16-C15	0.63 (64)	N1-C2-O2-C4	-176.70 (32)
C16-C11-C12-C13	-1.12 (63)	C2-O2-C4-C41	- 64.41 (46)
C11-C12-C13-C14	0.91 (67)	C2-O2-C4-C42	177.50 (35)
C12-C13-C14-C15	-0.17 (70)	C2-O2-C4-C43	60.14 (47)
C13-C14-C15-C16	-0.31 (73)		

durchgeführt. Nur für eines dieser Moleküle, nämlich für 1,2-Bisethoxy-carbonyl-1-[2-hydroxy-2-(1-phenylpyrazol-4-yl)-ethyl]-hydrazin, wurden die Koordinaten der Nicht-Wasserstoffatome veröffentlicht [8]. Die der Wasserstoffatome sind leider unzugänglich, und es ist unmöglich, für diese Verbindung ähnliche Betrachtungen anzustellen. Man kann nur feststellen, daß der Winkel C2 - N1 - N2, der in unserem Bericht 119.4(3)° beträgt, unbeträchtlich größer als im Bericht [8] [118.9(4)°] ist.

Dank

Die Synthese wurde durch die Polnische Akademie der Wissenschaften im Rahmen des Forschungsplans CPBP 01.13.2.5 gefördert. Die Kristallstrukturbestimmung wurde durch das Ministerium für Nationale Erziehung im Rahmen des Forschungsprogramms RP.II.10 mit Geldmitteln unterstützt. Wir danken diesen Institutionen dafür.

Wir danken auch Herrn Andrzej Fruziński für seine Hilfe bei der Herstellung der Abbildungen.

Literatur

- Toniolo C., Bonora G. M., Bavoso A., Benedetti E., Di Blasio B., Pavone V., Pedone C., Barone V., Lelj F., Leplawy M. T., Kaczmarek K., Redliński A. (1988) Biopolymers 27: 373
- [2] Hardy P. M., Lingham I. N. (1983) Int. J. Peptide Protein Res. 21: 406
- [3] Sheldrick G. (1986) SHELX-86 Program for the Solution Crystal Structures from Diffraction Data. Göttingen
- [4] Sheldrick G. (1976) SHELX-76 Program for Crystal Structure Determination. Cambridge
- [5] Willis B. T. M., Pryor A. W. (1975) Thermal Vibrations in Crystallography. Cambridge University Press, Cambridge, p. 101
- [6] Benedetti E., Toniolo C., Hardy P., Barone V., Bavoso A., Di Blasio B., Grimaldi P., Lelj F., Pavone V., Pedone C., Bonora G. M., Lingham I. (1984) J. Am. Chem. Soc. 106: 8146
- [7] Allen F. H., Kennard O., Taylor R. (1983) Acc. Chem. Res. 16: 143
- [8] Jonez R. A., Gonzalez B. A., Arques J. S., Prado J. Q., King T. J. (1984) J. Chem. Soc. Perkin Trans. I: 1423

Eingegangen 13. Dezember 1989. Angenommen 28. August 1990